
The Ultimate ONT Study Package

 Chris Bryant, CCIE #12933 http://www.thebryantadvantage.com

Back To Index

Congestion Detection And Avoidance

Overview

The Danger of Tail Drop

When the queue is full, packets that are trying to queue up for
transmission literally have nowhere to be put! These packets are then
subject to tail drop, which is a fancy way of saying "you're being dropped
because we have no place to put you".

You know that TCP has a detection and recovery scheme when it comes
to missing segments, so tail drop is no big deal, right? Quite the opposite,
it's a huge deal.

The problem starts innocently enough, as the senders realize their TCP
packets are being dropped. As we'd expect, the senders then throttle
back on their transmission speed. After doing so, the senders will then
gradually speed their transmission rates back up.

As multiple senders increase their tranmission rates, the queue will fill up
again, and the senders will again almost simultaneously slow their
tranmission rates, followed by another near-simultaneous increase. As a
result of this global synchronization, the links are perpetually in one of two
states - congested or underused. Basically, the network ends up being
either hammered or not being used to its full potential, and those are both
circumstances we want to avoid. One way to avoid global synchronization
is though the use of Random Early Detection (RED).

The Danger Of Tail Drop

RED - Random Early Detection

WRED - Weighted Random Early Detection

Traffic Shaping & Policing

Compression Methods

"Hot Spots And Gotchas"

Random Early Detection (RED)

At first glance, you might wonder what the difference is between RED and
tail drop. If packets are being dropped randomly by RED - and from the
name, obviously they are - why not just use tail drop?

RED is preferred over tail drop due to RED's ability to see that the queue
is becoming congested before it's totally congested - that's the "early
detection" part of RED. Another benefit of RED is its ability to drop
packets at a higher rate as the queue length approaches its maximum.

RED will use three separate values to perform this congestion detection:

� Minimum Queue Threshold - This is when RED begins to drop
packets.

� Maximum Queue Threshold - At this level, RED is dropping as
many packets as it can!

� Mark Probability Denominator - Value used to decide by RED to
decide exactly how many packets "as many packets as it can" is.
For example, if the MPD is set to 100, one out of every 100 packets
will be dropped when the queue average reaches the max queue
threshold value.

Those two thresholds actually give us three possibilities regarding the
number of packets in the queue:

� Between zero and the minimum threshold
� Between the minimum and maximum threshold
� Over the maximum threshold

RED has a different packet drop behavior for each of those situations.

No Drop: When the number of packets in the queue is between zero
and the minimum, RED drops no packets. After all, if the queue size
is below the minimum threshold, why drop packets?

Random Drop: Between the minimum and maximum thresholds,
packets are randomly dropped ("early detection"). As the queue size
gets closer to the maximum, RED increases the drop rate.

Full Drop: When the queue size exceeds the maximum, all newly-
arrived packets are dropped until the queue size no longer exceeds
that maximum. If that sounds like tail drop, that's because it is!

The mark probability denominator determines the probability of a packet
being dropped when the number of packets in the queue reaches the
maximum threshold. That might sound complicated, but it's not:

When the average queue size reaches the maximum threshold
value, drop 1 of every < MDP value> packets .

If the MDP is set to 5, one out of every 5 packets will be dropped when
the average queue size hits the maximum threshold. (a 20% drop
probability). If the queue size exceeds the maximum threshold, Tail Drop
behavior goes into effect.

Be careful - setting the MPD to 1 will result in dropping all excess traffic
when that max threshold is reached.

RED is a major improvement over Tail Drop, but it still doesn't give us a
great deal of control over the entire queueing and dropping process. With
one simple word, though, we do gain that control - when we use Weighted
Random Early Detection (WRED).

Weighted Random Early Detection

The "weight" in WRED refers to the amount of importance assigned to a
given traffic type. IP Prec and DSCP values can be used to assign this
weight, and here we'll concentrate on IP Precedence.

Since there are multiple IP Precedence values, multiple weights and
thresholds can be assigned, indicating to the router that certain traffic
types should be subject to packet drop before other higher-priority traffic.
This allows WRED to selectively drop packets, rather than just the total
random drop of RED.

IP Precedence values range from 0 - 7, with 7 as the highest precedence.
Here's a breakdown of all IP Prec values and their common names:

7 - Network 6 - Internet 5 - Critical

4 - Flash-Override 3 - Flash 2 - Immediate

1 - Priority 0 - Routine

Enabling WRED is simple enough:

R3(config)#int serial0

R3(config-if)#random-detect

When WRED is enabled, two values are set -- the weight value used in the
average queue length configuration is set to 9, and the mark probability
denominator for all IP Prec values is set to 10.

What's that? I didn't give you the formula WRED uses to calculate the

average queue size? Here you are....

(old_average * (1 - 1/2^n)) + (current_queue_size * 1/2^n)

I wouldn't spend a great amount of time memorizing that formula, but
there it is! "n" is set to 9 by default, and Cisco documentation
recommends that you leave that at the default. So do I! But if you have a
truly great reason for changing this value, you can do so with this
command:

R3(config-if)#random-detect exponential-weighting-constant ?

 <1-16> integer in 1..16 used in weighted average to mean 2^number

To assign a minimum threshold, maximum threshold, and mark probability
denominator to a given IP Precedence value, use the following command:

R3(config-if)#random-detect precedence ?

 <0-7> IP precedence

 rsvp rsvp traffic

R3(config-if)#random-detect precedence 7 ?

 <1-4096> minimum threshold (number of packets)

R3(config-if)#random-detect precedence 7 1000 ?

 <1-4096> maximum threshold (number of packets)

R3(config-if)#random-detect precedence 7 1000 2000 ?

 <1-65536> mark probability denominator

 <cr>

R3(config-if)#random-detect precedence 7 1000 2000 5

Using what we learned earlier in this chapter, at what point will traffic
begin to be dropped for traffic with IP Precedence 7? Let's review....

The minimum threshold is set to 1000 packets. As long as there are fewer
than 1000 packets in the queue, no packets will be dropped.

As the average queue size approaches the maximum queue size value,
the mark probability denominator comes into play. I set that value to 5,
meaning that one out of every 5 packets will be dropped.

When the queue length reaches 2000 packets, all new packets will be
dropped.

I want to reiterate that this is strictly an example, not a config you would
necessarily want to set on a production network. Cisco recommends you
keep these values at their defaults, and that's an excellent idea. You
should have a very good reason for changing any of these values before
actually doing so!

Traffic Shaping And Policing

These two terms are often mentioned jointly, but they are far from the
same thing.

Traffic shaping is more of a "friendly" policy toward excess traffic. When
traffic shaping is in effect, non-conforming traffic will be buffered on its
way to eventually being transmitted. Traffic shaping is particularly
effective when your network has to deal with bursty traffic on a regular
basis.

Traffic policing is a whole other ball game. One of two things is going to
happen to non-conforming traffic when policing is in effect:

� The traffic is dropped
� The traffic is demoted in importance ("re-marked")

By the way, the technical term for non-conforming traffic is "out of profile",
which results in the non-technical-sounding "OOP" acronym.

Before we look at some policing and shaping configurations, let's look at
the other major differences between the two.

� Traffic policing can be applied on both an incoming and outgoing
basis; traffic shaping can only be applied to outgoing traffic.

� TCP retransmissions do occur as a result of dropped packets when
policing is in effect. These retransmissions occur with traffic shaping
as well, but there will not be as many since traffic shaping does
buffer OOP packets.

� Traffic policing does consider packet marking and will perform packet
re-marking, but traffic shaping doesn't have anything to do with either
packet marking or re-marking.

Traffic policing is more complex to configure than shaping, so we'll tackle
that one first. A traffic policy is actually applied in a policy map, so the first
part of the configuration will look very familiar! There are quite a few
options in a traffic policing config, so we'll use IOS Help quite a bit in this
section.

In this example, we'll assume that we want to police traffic sourced from
172.1.1.0 /24.

R1(config)#access-list 45 permit 172.1.1.0 0.0.0.255

R1(config)#

R1(config)#class-map GROUP45

R1(config-cmap)#match access-group 45

Now let's start using IOS Help to see our traffic policing options. For this

config, we'll need to define three separate values. From left to right in the
police command, they are:

� Average transmission rate
� Normal burst size
� Excess burst size

I often mention that you should always use IOS Help when entering any
value having anything to do with time or packet size. This is particularly
true with traffic policing. Notice anything unusual about the below
display?

R1(config-pmap-c)#police ?

 <8000-2000000000> Bits per second

R1(config-pmap-c)#police 10000 ?

 <1000-512000000> Burst bytes

R1(config-pmap-c)#police 10000 3000 ?

 <1000-512000000> Burst bytes

The average rate is configured in bits per second, while the normal and
excess burst values are configured in bytes per second.

In the following example, we'll define an average transmission rate of
10000 BPS, a normal burst of 3000 bytes, and an excess burst size of
4000 bytes. After doing so, we'll use IOS Help to see the options for
conforming ("in-profile") traffic.

R1(config-pmap-c)#police 10000 3000 4000 conform-action ?

 drop drop packet

 exceed-action action when rate is within conform and

 conform + exceed burst

 set-clp-transmit set atm clp and send it

 set-discard-class-transmit set discard-class and send it

 set-dscp-transmit set dscp and send it

 set-frde-transmit set FR DE and send it

 set-mpls-exp-imposition-transmit set exp at tag imposition and send it

 set-mpls-exp-topmost-transmit set exp on topmost label and send it

 set-prec-transmit rewrite packet precedence and send it

 set-qos-transmit set qos-group and send it

 transmit transmit packet

 <cr>

Quite a few options! The three we're most likely to use here are transmit,
set-dscp-transmit, and set-prec-transmit. transmit does exactly that, and
the other two options transmit the traffic after setting a specific DSCP or IP
Precedence value. You have more choices with DSCP than I'll show
here, but here are just a few:

R1(config-pmap-c)#police 10000 3000 4000 conform-action set-dscp-

transmit ?

 <0-63> Differentiated services codepoint value

 af11 Match packets with AF11 dscp (001010)

 af12 Match packets with AF12 dscp (001100)

If you're setting the IP Precedence, the choices are much simpler:

R1(config-pmap-c)#police 10000 3000 4000 conform-action set-prec-

transmit ?

 <0-7> new precedence

Even though this may be one of the longest commands you've seen, we're
not done yet! We now have to define what should happen to packets that
exceed the configured rate limit but is still within the burst limits we
configured.

The options should look familiar! Also note the dollar sign appearing on
the left-hand side of the command - that indicates that the command is so
long that not all of the characters can be shown.

R1(config-pmap-c)#police 10000 3000 4000 conform-action transmit ?

exceed-action action when rate is within conform and conform + exceed

burst

 <cr>

R1(config-pmap-c)#$0 3000 4000 conform-action transmit exceed-action ?
 drop drop packet

 set-clp-transmit set atm clp and send it

 set-discard-class-transmit set discard-class and send it

 set-dscp-transmit set dscp and send it

 set-frde-transmit set FR DE and send it

 set-mpls-exp-imposition-transmit set exp at tag imposition and send it

 set-mpls-exp-topmost-transmit set exp on topmost label and send it

 set-prec-transmit rewrite packet precedence and send it

 set-qos-transmit set qos-group and send it

 transmit transmit packet

Finally, we can set an action for traffic that exceeds the rate limit and burst
limits combined. This violate-action value is not available on all IOS
versions, but it's a good one to know. The violate-action options are the
same as they were for conform-action and exceed-action, so I won't show
them again, but generally you're going to configure these packets to be
dropped.

R1(config-pmap-c)#$action transmit exceed-action set-prec-transmit 2 ?

violate-action action when rate is greater than conform + exceed burst

Running show config verifies that we ended up with a very long command!

policy-map POLICEGROUP45

 class GROUP45

 police 10000 3000 4000 conform-action transmit exceed-action set-prec-

transmit 2 violate-action drop

Verify the traffic policing with show policy-map.

R1#show policy-map

 Policy Map POLICEGROUP45

 Class GROUP45

 police cir 10000 bc 3000 be 4000

 conform-action transmit

 exceed-action set-prec-transmit 2

 violate-action drop

Not only is traffic shaping more forgiving to OOP packets than policing, it's
also got few options. Traffic shaping is also configured as part of a policy
map, and shape is the command that puts traffic shaping into effect.

R1(config)#policy-map POLICEGROUP45

R1(config-pmap)#class GROUP45

R1(config-pmap-c)#bandwidth 200

R1(config-pmap-c)#shape ?

 adaptive Enable Traffic Shaping adaptation to BECN

 average configure token bucket: CIR (bps) [Bc (bits) [Be (bits)]]

 send out Bc only per interval

 fecn-adapt Enable Traffic Shaping reflection of FECN as BECN

 fr-voice-adapt Enable rate adjustment depending on voice presence

 max-buffers Set Maximum Buffer Limit

 peak configure token bucket: CIR (bps) [Bc (bits) [Be (bits)]]

 send out Bc+Be per interval

The most common usage of the shape command is to set a peak value,
which allows traffic in this class to go above and beyond the configured
bandwidth value if there is additional bandwidth available.

Take a close look at the shape options - quite a few Frame Relay options
there! While you can perform shaping on Metro Ethernet and ATM as
well, most of us will configure traffic shaping primarily for Frame Relay. (Of
course, that depends on your network and admin role!)

Remind me - what do we always do when configuring a command with a
time or packet size value?

R1(config-pmap-c)#shape peak ?

<8000-154400000> Target Bit Rate (bits per second), the value needs to be

 multiple of 8000

Right! Always use IOS Help. The peak command is measured in bits per
second, and has to be set to a multiple of 8000.

Compression Methods

Another good way to avoid congestion is to compress some of the data
we're transmitting. We've got quite a few options when it comes to
compression, so let's start at Layer Two.

L2 compression is actually L2 payload compression, an important
distinction from compression methods we'll look at later in this course that
only compress packet headers. From past Cisco exams, you're probably
familiar with these three L2 compression methods:

� Stacker

� Predictor
� Microsoft Point-To-Point Compression

Cisco's website recommends that you choose Predictor if the congestion is
due to an overloaded router, while Stacker is a good selection if limited
bandwidth is the issue. Additionally, Cisco's recommendation is that you
disable compression if the CPU load goes over the 40% mark.

Not all routers have hardware-based compression capabilities, but if you're
working on one that does, be aware that hardware-based compression is
much easier on the CPU than software-based compression. The
hardware-based compression process is also faster than software-based,
resulting in less delay before the compressed data is transmitted.

TCP And RTP Header Compression

Obviously, we're only compressing the header here, so CPU load really
isn't an issue. What can be an issue is getting the syntax right!

Before we look at these compression methods in action, take note that
these two methods compress different headers:

� RTP HC compresses the IP, RTP, and UDP headers
� TCP HC compresses the IP and TCP headers only

If you're configuring TCP HC on a non-Frame Relay interface, the config is
pretty simple:

R2(config-if)#ip tcp header-compression ?

 ietf-format Compressing using IETF format

 passive Compress only for destinations which send compressed headers

 <cr>

You may be familiar with the passive option from your CCNA studies.
When this option is used, headers destined for a given destination are
compressed only if headers on packets from that same destination arrived
in a compressed state.

If you choose IETF compression, the remote routers must be configured
for IETF as well. You can't run IETF compression on Frame Relay
interfaces.

There's a third option that's not available on all routers, and that is iphc-
format. This command enables the IP Header Compression (IPHC)
header compression method. When IPHC is in effect on an interface
running HDLC or PPP, RTP header compression will also be enabled. As
with IETF header compression, IPHC compression cannot run on
interfaces enabled with Frame Relay.

Configuring TCP HC on interfaces running Frame Relay is a little different.
I did get an interesting result when attempting to configure IETF
encapsulation on an interface that was already running Frame. We're not
supposed to be able to do that, right?

R2(config)#int s0/0/0

R2(config-if)#encap frame

R2(config-if)#ip tcp header ?

 ietf-format Compressing using IETF format

 passive Compress only for destinations which send compressed headers

 <cr>

R2(config-if)#ip tcp header ietf

I didn't get an error message when I entered that command. Interesting! I
then saved the config and did a quick show config, and what did I see
under the serial interface?

interface Serial0/0/0

 no ip address

 encapsulation frame-relay

 frame-relay lmi-type cisco

 frame-relay ip tcp header-compression

The router actually replaced what I entered with the correct command -
frame-relay ip tcp header-compression - with no IETF in sight. I wouldn't
count on the exam doing that for you, though!

With that command in place, every frame map statement we add to the
config will inherit that setting. I'll add two frame map statements and then
run our old friend show frame map to verify.

R2(config)#int s0/0/0

R2(config-if)#frame map ip 172.12.123.1 122 broadcast

R2(config-if)#frame map ip 172.12.123.2 123 broadcast

R2#show frame map

Serial0/0/0 (up): ip 172.12.123.1 dlci 122(0x7A,0x1CA0), static,

 broadcast,

 CISCO, status defined, active

 TCP/IP Header Compression (inherited), connections: 256

Serial0/0/0 (up): ip 172.12.123.2 dlci 123(0x7B,0x1CB0), static,

 broadcast,

 CISCO, status defined, active

 TCP/IP Header Compression (inherited), connections: 256

What if we wanted to add a third frame map statement that should not
inherit the compression setting? We can use the nocompress option in the
frame map statement to nullify the inheritance for that particular mapping,
while still allowing the other mappings to inherit compression.

R2(config-if)#frame map ip 172.12.123.3 124 ?

 broadcast Broadcasts should be forwarded to this address

 cisco Use CISCO Encapsulation

 compress Enable TCP/IP and RTP/IP header compression

 ietf Use RFC1490/RFC2427 Encapsulation

 nocompress Do not compress TCP/IP headers

 payload-compression Use payload compression

 rtp RTP header compression parameters

 tcp TCP header compression parameters

 <cr>

R2(config-if)#frame map ip 172.12.123.3 124 nocompress

Let's verify with show frame map.

R2#show frame map

Serial0/0/0 (up): ip 172.12.123.1 dlci 122(0x7A,0x1CA0), static,

 broadcast,

 CISCO, status active

 TCP/IP Header Compression (inherited), connections: 256

Serial0/0/0 (up): ip 172.12.123.2 dlci 123(0x7B,0x1CB0), static,

 broadcast,

 CISCO, status active

 TCP/IP Header Compression (inherited), connections: 256

Serial0/0/0 (up): ip 172.12.123.3 dlci 124(0x7C,0x1CC0), static,

 CISCO, status active

Note that the last map statement says nothing about TCP HC. The
nocompress option successfully prevented that.

We can also configure a frame map statement to use TCP HC while not
configuring TCP HC on the main interface. To illustrate, I'll remove TCP
HC from an earlier configuration.

R2(config)#int s0/0/0

R2(config-if)#no frame ip tcp header

I'll now add two frame map statements, one configured to use TCP HC and
the other will be a "normal" frame map statement.

R2(config)#int s0/0/0

R2(config-if)#frame map ip 172.12.123.5 155 broadcast

R2(config-if)#frame map ip 172.12.123.6 155 broadcast ?

 cisco Use CISCO Encapsulation

 compress Enable TCP/IP and RTP/IP header compression

 ietf Use RFC1490/RFC2427 Encapsulation

 nocompress Do not compress TCP/IP headers

 payload-compression Use payload compression

 rtp RTP header compression parameters

 tcp TCP header compression parameters

 <cr>

R2(config-if)#frame map ip 172.12.123.6 155 broadcast tcp ?

 header-compression Enable TCP/IP header compression

R2(config-if)#frame map ip 172.12.123.6 155 broadcast tcp header-

compression ?

 active Always compress TCP/IP headers

 connections Maximum number of compressed TCP connections

 passive Compress for destinations sending compressed headers

 <cr>

R2(config-if)#frame map ip 172.12.123.6 155 broadcast tcp header-

compression

Verify with show frame map.

R2#show frame map

Serial0/0/0 (up): ip 172.12.123.5 dlci 155(0x9B,0x24B0), static,

 broadcast,

 CISCO, status active

Serial0/0/0 (up): ip 172.12.123.6 dlci 155(0x9B,0x24B0), static,

 broadcast,

 CISCO, status active

 TCP/IP Header Compression (enabled), connections: 256

There is a popular misconception that individual frame map statements
cannot run TCP HC without it being enabled on the main interface. Now
you know better! :)

RTP Header Compression

Realtime Transport Protocol compression is configured in much the same
fashion as TCP HC. At the interface level, it's enabled with the ip rtp
header-compression command. As with TCP HC, configuring passive RTP
compression means that outbound RTP packets only have their headers
compressed if that same interface is receiving RTP packets with their
headers compressed.

R3(config)#int s0/0/0

R3(config-if)#ip rtp header-compression ?

 ietf-format Compressing using IETF format

 iphc-format Compress using IPHC format

 passive Compress only for destinations which send compressed

 headers

 <cr>

R3(config-if)#ip rtp header-compression

RTP header compression offers both IETF and IPHC compression options,
and the rules are the same as they were with TCP HC - if one end of the
channel is using either IETF or IPHC, the other end of the channel must be
doing so as well.

Configuring RTP HC over Frame Relay will look much the same as TCP
HC did, and the same rules apply here as well. Configuring RTP HC on the
main interface will result in all frame map statements inheriting that config,
as verified below by show frame map.

R3(config)#int s0/0/0

R3(config-if)#encap frame

R3(config-if)#ip rtp header-compression

R3(config-if)#frame map ip 172.12.123.1 221 broadcast

R3(config-if)#frame map ip 172.12.123.2 221 broadcast

R3#show frame map

Serial0/0/0 (up): ip 172.12.123.1 dlci 221(0xDD,0x34D0), static,

 broadcast,

 CISCO, status active

 RTP Header Compression (inherited), connections: 256

Serial0/0/0 (up): ip 172.12.123.2 dlci 221(0xDD,0x34D0), static,

 broadcast,

 CISCO, status active

 RTP Header Compression (inherited), connections: 256

To then configure a mapping that will not be subject to RTP HC under that
interface, run nocompress with that frame mapping.

R3(config)#int s0/0/0

R3(config-if)#frame map ip 172.12.123.3 323 ?

 broadcast Broadcasts should be forwarded to this address

 cisco Use CISCO Encapsulation

 compress Enable TCP/IP and RTP/IP header compression

 ietf Use RFC1490/RFC2427 Encapsulation

 nocompress Do not compress TCP/IP headers
 payload-compression Use payload compression

 rtp RTP header compression parameters

 tcp TCP header compression parameters

 <cr>

R3(config-if)#frame map ip 172.12.123.3 323 nocompress

R3#show frame map

Serial0/0/0 (up): ip 172.12.123.1 dlci 221(0xDD,0x34D0), static,

 broadcast,

 CISCO, status active

 RTP Header Compression (inherited), connections: 256

Serial0/0/0 (up): ip 172.12.123.2 dlci 221(0xDD,0x34D0), static,

 broadcast,

 CISCO, status active

 RTP Header Compression (inherited), connections: 256

Serial0/0/0 (up): ip 172.12.123.3 dlci 323(0x143,0x5030), static,

 CISCO, status active

To remove RTP HC from the main interface, run no ip rtp header-
compression; to run RTP HC on an individual frame mapping while not
enabling it on the main interface, use the RTP HC option on the frame map
statement itself.

R3(config)#int s0/0/0

R3(config-if)#no ip rtp header-compression

R3(config-if)#frame map ip 172.12.123.4 224 broadcast rtp header-

compression

R3#show frame map

Serial0/0/0 (up): ip 172.12.123.1 dlci 221(0xDD,0x34D0), static,

 broadcast,

 CISCO, status active

Serial0/0/0 (up): ip 172.12.123.2 dlci 221(0xDD,0x34D0), static,

 broadcast,

 CISCO, status active

Serial0/0/0 (up): ip 172.12.123.3 dlci 323(0x143,0x5030), static,

 broadcast,

 CISCO, status active

Serial0/0/0 (up): ip 172.12.123.4 dlci 224(0xE0,0x3800), static,

 broadcast,

 CISCO, status active

 RTP Header Compression (enabled), connections: 256

What Exactly Does RTP HC Compress, Anyway?

It's pretty easy to figure out what TCP HC compresses, but what about
RTP HC? RTP HC will compress RTP headers, certainly - but it will also
compress IP and UDP headers. Therefore, if you're using both
compression methods, you're compressing both TCP and UDP headers.

RTP compression can result in quite a bit of overhead reduction.
Consider those three headers and their size:

� IP Header: 20 bytes
� UDP Header: 8 bytes
� RTP Header: 12 bytes

RTP HC will result in that overall header size being reduced to anywhere
from 2 to 4 bytes, depending on whose documentation you're reading.

So Which One Do I Use In My Network?

In a nutshell, use TCP HC for data transmission and RTP HC for Voice
transmissions. In the past, a combination of LLQ and RTP HC has
worked nicely for voice transmissions, since LLQ creates that strict priority
queue for voice. Team that up with RTP HC and you've got a great way to
speed up Voice transmissions.

For good ol' basic data transmissions, I personally prefer CBWFQ with
TCP HC, but you can use WFQ as well.

Hot Spots And Gotchas

Traffic Shaping Vs. Traffic Policing:

Both Policing and Shaping are used to keep traffic flows from exceeding a
configured rate limit, but they use very different methods of doing so.

Traffic Policing:

Will either drop OOP packets or re-mark the traffic with a new IP
Prec value, but will not delay them or "re-queue" them

Can be configured to police both incoming and outgoing traffic

Generally causes more TCP retransmissions than Shaping, since

Policing will generally result in more packets being dropped

Supports traffic marking

Traffic Shaping:

Delays OOP packets by queueing and then transmitting the traffic
when possible rather than just dropping the packets immediately

Can be configured to shape outgoing traffic flows only

Generally fewer TCP retransmissions than Policing

Does not support traffic marking

WRED:

Weighted Random Early Detection detects congestion before the queue is
actually full, as does RED. The big difference between the two is that
WRED will selectively drop traffic by considering IP Precedence or DSCP
values in determining which traffic should be dropped.

RED:

RED will use three separate values for packet drop:

� Minimum Queue Threshold - This is when RED begins to drop
packets.

� Maximum Queue Threshold - At this level, RED is dropping as
many packets as it can.

� Mark Probability Denominator - Value used to decide by RED to
decide exactly how many packets "as many packets as it can" is.

RED has three packet drop modes:

No Drop: When the number of packets in the queue is between zero
and the minimum, RED drops no packets. After all, if the queue size
is below the minimum threshold, why drop packets?

Random Drop: Between the minimum and maximum thresholds,
packets are randomly dropped ("early detection"). As the queue size
gets closer to the maximum, RED increases the drop rate.

Full Drop: When the queue size exceeds the maximum, all newly-
arrived packets are dropped until the queue size no longer exceeds
that maximum. If that sounds like tail drop, that's because it is!

Best-practice combinations of queueing and header compression: LLQ
and RTP HC for voice, CBWFQ and TCP HC for normal data

transmissions.

Copyright © 2008 The Bryant Advantage. All Rights Reserved.

