
The Ultimate ONT Study Package

 Chris Bryant, CCIE #12933 http://www.thebryantadvantage.com

Back To Index

Queuing

Overview

At its core, queuing is a congestion management technique that allows us
a degree of control over which packets a router will transmit first.

Basically, we're doing three things - creating the queues, deciding which
traffic goes into each queue by classifying the traffic, and then deciding
the order in which queues will be allowed to send their traffic
("scheduling").

Of course, you and I both know it gets just a bit more complex. We've got
quite a few queueing options, and the first one is the most basic - FIFO.

First-In, First-Out

If ever there's been a "the name is the recipe" networking term, this is it.
Traffic isn't ranked, marked, classified, or anything else - it's just queued
up and sent, and traffic is queued in the order in which it arrived.

The default queuing scheme for interfaces running at greater than E1
speed, FIFO is just fine in some instances, but the amount of time-

First In, First Out (FIFO)

Round Robin & Weighted Round Robin (WRR)

Priority Queuing (PQ)

Weighted Fair Queuing (WFQ)

Class-Based Weighted Fair Queuing (CBWFQ)

Low Latency Queuing (LLQ)

Link Fragmenting & Interleaving (LFI)

"Hot Spots And Gotchas"

sensitive data on today's networks is increasing every day. Voice and
video are particularly subject to jitter, and if you've ever tried to watch
streaming video on a slow connection, you know how frustrating that can
be.

Also, every organization has applications that are more critical to
operations than others. Yes, I know that every end user thinks their apps
are the most important, but some apps truly are more important than
others! You don't want traffic created by your company's critical apps to
sit in a FIFO queue with other, less-important traffic.

I was once the network admin for a hospital, and there were applications
that helped save lives - and if those apps were down, patients' lives were
at risk. The data produced by those apps could not be left to FIFO.

Luckily for us, Cisco routers give us quite a few options when it comes to
queuing, and there's a pretty good chance we'll see a lot of these options
on the ONT exam.

Round-Robin And Weighted Round-Robin (WRR)

With round-robin (RR) queuing, no one queue is given priority over
another. For example, if you have five queues in an RR scheme, one
packet will be sent from Queue 1, then one from Queue 2, and so forth
until each queue has had an opportunity to send a packet. The process
then repeats itself. If you've worked with Custom Queuing (CQ) before,
that's an excellent example of RR queuing. If you haven't worked with CQ
before, stick around!

Weighted Round-Robin (WRR) allows you to assign weights to queues;
queues that have higher weights will transmit more packets than others,
but it's still a round-robin format.

Let's say we have five queues and the following weights:

Q1: 5 Q2: 4 Q3: 3 Q4: 2 Q5: 1

Theoretically, Q1 will send five packets, then Q2 will send four, Q3 will
send three, Q4 will send two, and Q5 will send one. Every queue gets a
chance to transmit, but again the queues with higher weights get to send
more packets.

That's the theory of how WRR works. You probably won't run into a
scenario like the following until you're going after your CCIE number, but
let's take a look at how Custom Queuing (CQ) is configured, and work in a
situation where WRR isn't quite so cut-and-dried.

Using Weights With Custom Queueing

In this example, we'll use source IP addresses to decide which queue
traffic should be placed into.

� Q1: Source 172.12.123.0 /24 Weight: 3
� Q2: Source 210.1.1.0 /24 Weight: 2
� Q3: Source 215.1.1.0 /24 Weight: 1
� Q4: All traffic that does not match any of the above. Weight: 1

As you've probably guessed, we first have to write ACLs matching those
three definitions.

R1(config)#access-list 10 permit 172.12.123.0 0.0.0.255

R1(config)#access-list 20 permit 210.1.1.0 0.0.0.255

R1(config)#access-list 30 permit 215.1.1.0 0.0.0.255

We'll use the queue-list command to match those ACLs to the appropriate
queues. I'll use IOS Help to show the options for the first queue-list. The
syntax is a little tricky when you first work with CQ, but you'll quickly get
used to it.

R1(config)#queue-list 1 ?

 default Set custom queue for unspecified datagrams

 interface Establish priorities for packets from a named interfac

 lowest-custom Set lowest number of queue to be treated as custom

 protocol priority queueing by protocol

 queue Configure parameters for a particular queue

 stun Establish priorities for stun packets

R1(config)#queue-list 1 protocol ?

 arp IP ARP

 bridge Bridging

 cdp Cisco Discovery Protocol

 compressedtcp Compressed TCP

 ip IP

 llc2 llc2

 pad PAD links

 snapshot Snapshot routing support

R1(config)#queue-list 1 protocol ip ?

 <0-16> queue number

R1(config)#queue-list 1 protocol ip 1 ?

 fragments Prioritize fragmented IP packets

 gt Classify packets greater than a specified size

 list To specify an access list

 lt Classify packets less than a specified size

 tcp Prioritize TCP packets 'to' or 'from' the specified port

 udp Prioritize UDP packets 'to' or 'from' the specified port

 <cr>

R1(config)#queue-list 1 protocol ip 1 list ?

 <1-199> IP access list

 <1300-2699> IP expanded access list

R1(config)#queue-list 1 protocol ip 1 list 10

R1(config)#queue-list 1 protocol ip 2 list 20

R1(config)#queue-list 1 protocol ip 3 list 30

Like ACLs, queue-lists are read from top to bottom. Once a match is
made, the traffic is queued and no other lines of the queue-list are
considered.

Now we'll add a default queue that will match all traffic that does not match
the first three lines of the queue-list.

R1(config)#queue-list 1 default 4

Now you're thinking, "That's all great, but what about the weights?" We
can assign a type of weight to each queue by assigning a byte-count to
each queue. Let's review the desired weights:

� Q1: Source 172.12.123.0 /24 Weight: 3
� Q2: Source 210.1.1.0 /24 Weight: 2
� Q3: Source 215.1.1.0 /24 Weight: 1

Q4: All traffic that does not match any of the above. Weight: 1

That means Q1's byte-count should be three times that of Q3 and Q4, and
Q2's byte-count should be twice that of Q3 and Q4. One configuration that
would give us the desired result is:

R1(config)#queue-list 1 queue 1 byte-count 3000

R1(config)#queue-list 1 queue 2 byte-count 2000

R1(config)#queue-list 1 queue 3 byte-count 1000

R1(config)#queue-list 1 queue 4 byte-count 1000

Pretty easy, eh? :) It really is simple. The only issue arises from the fact
that not all packets are the same size, and CQ will continue to transmit
packets as long as that byte-count hasn't been reached yet. Consider this
example:

Q1 has been configured with a byte-count of 3000 bytes. The first two
packets are 1450 and 1350 bytes, for a total of 2800 bytes. The question
is - will the 1250-byte packet in Q1 be transmitted, or will Q2 now begin to
transmit?

Q1 will indeed transmit the 1250-byte packet. CQ considers the overall
byte-count after each packet is sent - and if the queue is still under its
byte-count limit, the queue will send the next packet in full, even if that
packet puts the queue over its byte-count limit. The 1250-byte packet in
this example will not be fragmented - it will be transmitted in its entirety.

This is hardly the end of the world, but it's a good detail to keep in mind.
CQ weights aren't perfect, but they are effective.

If you want to bypass the byte-count calculations and give each queue a
strict packet limit instead, you can do so with the queue-list command's
limit option. Here, we'll set the default queue's limit to 100 packets after
removing the byte-count command.

R1(config)#no queue-list 1 queue 4 byte-count 1000

R1(config)#queue-list 1 queue 4 ?

 byte-count Specify size in bytes of a particular queue

 limit Set queue entry limit of a particular queue

R1(config)#queue-list 1 queue 4 limit ?

 <0-32767> number of queue entries

R1(config)#queue-list 1 queue 4 limit 100

R1(config)#

Hey, after all that, we should apply the list to the interface, right? We'll do
so with the custom-queue-list command. There are no options with this
command.

We'll verify all of this with show queueing custom. This command displays the queue-list numbers,
the queue numbers, and everything else you need to know about your CQ configuration, including
any ACLs in use.

R1#show queueing custom

Current custom queue configuration:

List Queue Args

1 4 default

1 1 protocol ip list 10

1 2 protocol ip list 20

1 3 protocol ip list 30

1 1 byte-count 3000

1 2 byte-count 2000

1 3 byte-count 1000

1 4 limit 100

Priority Queuing

PQ is simple enough to configure, but there's one big trap you have to
watch out for when configuring it. Before we discuss that, let's go over the
basics of PQ.

PQ has four and only four queues. All four are predefined as to priority
and capacity. Note that the Normal queue is the default queue; packets
that have not had a priority explicitly assigned to them are placed into that
queue.

High-Priority Queue: Capacity of 20 packets

Medium-Priority Queue: Capacity of 40 packets

Normal-Priority (Default) Queue: Capacity of 60 packets

Low-Priority Queue: Capacity of 80 packets

As you'll see in just a moment, changing the capacity of any of these
queues is easy. The difficult part of working with PQ is resisting the
temptation to configure a lot of traffic as high priority (yeah, I know,
everybody's traffic is high priority - just like their email, right?).

Why is this a problem? PQ does not work in a round-robin format, as
some other queuing strategies do. Regardless of how much traffic is
waiting in the lower queues, the High-priority queue is always going to be
given first priority, and that means traffic in the lower-priority queues can
sit there for a long time. Let's take a look at one basic scenario that
illustrates this.

As the network admin, you decide that FTP packets should be given the
highest priority possible. You configure FTP packets to be placed in the
High-priority queue, and they're transmitted before any other traffic. Since
you've defined no other priorities, all other traffic is placed into the Normal
queue.

This in itself would probably not cause a problem, but the temptation is to
give too many other traffic types a higher priority as well. If too many
traffic types are placed into the higher queues, packets can end up sitting
in the lower queues for too long.

With PQ, anytime a packet enters the High queue, the router will stop
transmitting any other queue's traffic and transmit the high-priority traffic.
The router can be transmitting traffic normally, in this case from the
Normal queue...

... but it only takes a single packet to arrive on a higher-priority queue for
the router to stop doing so and transmit the newly-arrived packet, while
the packets in the other queues that actually arrived earlier sit and wait
their turn. And if too many packets enter those higher-priority queues, that
turn may not come for quite a while!

This is referred to as packet starvation and queue starvation, but no

matter what you call it, it's bad! The first step toward preventing this
scenario is resisting the temptation to define too many different traffic
types as high or medium priority.

And how do you define traffic with PQ? Glad you asked!

Step One: Create The Priority List

Remember how you wrote dialer lists in your CCNA studies to define
interesting traffic? Creating priority lists in PQ is a similar operation, but
the priority list will actually do two things - define traffic, and define which
queue that traffic named by the list should be placed into. If traffic is not
explicitly placed into a queue, it will be placed into the Normal queue.

Since we're studying Cisco, you just know we're going to have quite a few
options! Let's use IOS Help to view the options for priority lists:

R1(config)#priority-list ?

 <1-16> Priority list number

This list number has the same purpose as the dialer list number in your
CCNA studies - this is the number that must be used in the interface-level
command in order to put this list into effect.

R1(config)#priority-list 1 ?

 default Set priority queue for unspecified datagrams

 interface Establish priorities for packets from a named interface

 protocol priority queueing by protocol

 queue-limit Set queue limits for priority queues

The first option, default, allows us to change the default queue priority from
Normal. We'll use this command to make the Low queue the default
queue.

R1(config)#priority-list 1 default ?

 high

 medium

 normal

 low

R1(config)#priority-list 1 default low

Always trust your configs, but verify them as well. We'll use show
queueing priority throughout this section to perform that verification. Here,
we see that the Low queue is now the default queue for priority list 1.

R1#show queueing priority

Current DLCI priority queue configuration:

Current priority queue configuration:

List Queue Args

1 low default

Let's take another look at the priority-list command.

R1(config)#priority-list 1 ?

 default Set priority queue for unspecified datagrams

 interface Establish priorities for packets from a named interface

 protocol priority queueing by protocol

 queue-limit Set queue limits for priority queues

The middle two options are key. We can apply this queuing scheme on a
per-interface level or a per-protocol level. If we choose the per-interface
approach, note that we can use physical or logical interfaces to do so.

R1(config)#priority-list 1 interface ?

 Async Async interface

 BRI ISDN Basic Rate Interface

 BVI Bridge-Group Virtual Interface

 CTunnel CTunnel interface

 Dialer Dialer interface

 Ethernet IEEE 802.3

 Group-Async Async Group interface

 Lex Lex interface

 Loopback Loopback interface

 Multilink Multilink-group interface

 Null Null interface

 Serial Serial

 Tunnel Tunnel interface

 Vif PGM Multicast Host interface

 Virtual-Template Virtual Template interface

 Virtual-TokenRing Virtual TokenRing

We'll configure all traffic coming in on this router's Serial0 interface to go
into the Normal queue. This does not affect traffic exiting the router via
Serial0.

R1(config)#priority-list 1 interface serial 0 ?

 high

 medium

 normal

 low

R1(config)#priority-list 1 interface serial 0 normal ?

 <cr>

When IOS Help shows the only option is <CR>, that means we're out of
options! After entering this command, we'll verify with show queueing
priority.

R1(config)#priority-list 1 interface serial 0 normal

R1#show queueing priority

Current DLCI priority queue configuration:

Current priority queue configuration:

List Queue Args

1 low default

1 normal interface Serial0

When using the protocol option, the syntax of the command can be a little

awkward at first. To illustrate, we'll write a line placing all TCP traffic into
the Medium queue. Let's use IOS Help to figure out how to do so.

R1(config)#priority-list 1 protocol ?

 aarp AppleTalk ARP

 appletalk AppleTalk

 arp IP ARP

 bridge Bridging

 cdp Cisco Discovery Protocol

 compressedtcp Compressed TCP

 decnet DECnet

 decnet_node DECnet Node

 decnet_router-l1 DECnet Router L1

 decnet_router-l2 DECnet Router L2

 ip IP

 ipx Novell IPX

 llc2 llc2

 pad PAD links

 snapshot Snapshot routing support

Hmmm. I've highlighted IP in this list, but that covers a lot of territory!
How can we define TCP traffic in this list, since it's not listed here?
Actually, TCP traffic is an option -- at the end of the command.

R1(config)#priority-list 1 protocol ip medium ?

 fragments Prioritize fragmented IP packets

 gt Prioritize packets greater than a specified size

 list To specify an access list

 lt Prioritize packets less than a specified size

 tcp Prioritize TCP packets 'to' or 'from' the specified port

 udp Prioritize UDP packets 'to' or 'from' the specified port

 <cr>

Like I always say, IOS Help is a lifesaver! If we wanted to specify a
certain TCP port for PQ, the port number can be named as well.

R1(config)#priority-list 1 protocol ip medium tcp ?

 <0-65535> Port number

 bgp Border Gateway Protocol (179)

 chargen Character generator (19)

 cmd Remote commands (rcmd, 514)

 daytime Daytime (13)

The router lists about 50 different port numbers at that point, so I'm only
showing you a few. We'll choose port 13 to place Daytime packets into
the Medium queue - unless we have even more options.

R1(config)#priority-list 1 protocol ip medium tcp 13 ?

 <cr>

Nope! Just hit <enter> and Daytime packets will then be placed into the
Medium queue. Verify with show queueing priority.

R1#show queueing priority

Current DLCI priority queue configuration:

Current priority queue configuration:

List Queue Args

1 low default

1 normal interface Serial0

1 medium protocol ip tcp port daytime

If you really want to be specific, you can use the gt and lt options to
specify queuing for packets of certain size. You can also define the queue
that fragmented packets should be placed into.

R1(config)#priority-list 1 protocol ip medium ?

 fragments Prioritize fragmented IP packets

 gt Prioritize packets greater than a specified size

 list To specify an access list

 lt Prioritize packets less than a specified size

 tcp Prioritize TCP packets 'to' or 'from' the specified port

 udp Prioritize UDP packets 'to' or 'from' the specified port

 <cr>

That's probably going to be too specific for most queuing strategies, but
you may well want to incorporate access lists when using PQ. Say you
wanted to place all traffic from the private network 10.0.0.0 /8 into the
Normal queue. An ACL is used to name that network - you could also
specify the destination if you use an extended ACL - and the list is then
named by the priority list.

R1(config)#access-list 10 permit 10.0.0.0 0.0.0.255

R1(config)#priority-list 1 protocol ip normal ?

 fragments Prioritize fragmented IP packets

 gt Prioritize packets greater than a specified size

 list To specify an access list

 lt Prioritize packets less than a specified size

 tcp Prioritize TCP packets 'to' or 'from' the specified port

 udp Prioritize UDP packets 'to' or 'from' the specified port

 <cr>

R1(config)#priority-list 1 protocol ip normal list ?

 <1-199> IP access list

 <1300-2699> IP expanded access list

R1(config)#priority-list 1 protocol ip normal list 10

You know the drill from here on out.... verify, verify, verify!

R1#show queueing priority

Current DLCI priority queue configuration:

Current priority queue configuration:

List Queue Args

1 low default

1 normal interface Serial0

1 medium protocol ip tcp port daytime

1 normal protocol ip list 10

After all of this work, we should apply the list to an interface! We'll use the
priority-group command to apply this list to interface serial0. It may
surprise you to find that there are no options with this command!

R1(config)#interface serial0

R1(config-if)#priority-group 1 ?

 <cr>

R1(config-if)#priority-group 1

Weighted Fair Queuing

The default queuing scheme for Serial interfaces running at E1 speed or
below, WFQ handles packets according to their flow, with a "flow" defined
as packets that have one of the following in common:

� Source or destination IP address
� Source or destination port number (TCP or UDP)
� Protocol Number (that's why I mention them occasionally)
� ToS (Type of Service)

Therefore, a group of packets destined for the IP address 213.1.1.1 would
be considered to be part of the same flow.

The key word in WFQ is "fair", since "fair" isn't a term we see in
networking very often! WFQ is considered "fair" because it assigns the
same weight to all traffic flows, while at the same time giving priority to
low-volume, interactive flows over high-volume flows ("aggressive flows",
in Cisco website documentation terms). This priority results in packets
being dropped from aggressive flows before they're dropped from low-
volume flows.

A major difference between WFQ and other queuing strategies is that
WFQ will dynamically build and tear down queues as they are needed.
WFQ cannot build an infinite number of queues, however; the default
maximum number of dynamic WFQ queues is 256. This can be changed,
but you can't just change it to any old number - that would be too easy!

Before we set the number of reservable queues, let's assume this serial
interface is running at over E1 speed - which means it would not be
running WFQ by default. Here's how you enable WFQ:

R1(config)#int serial 0

R1(config-if)#fair-queue

Now let's set the number of dynamic queues.

R1(config)#int serial 0

R1(config-if)#fair-queue ?

 <1-4096> Congestive Discard Threshold

 <cr>

R1(config-if)#fair-queue 100 ?

 <16-4096> Number Dynamic Conversation Queues

 <cr>

R1(config-if)#fair-queue 100 200

Number of dynamic queues must be a power of 2 (16, 32, 64, 128, 256, 512,

1024)

I tried to set the number of Dynamic Conversation Queues to 200, but
Cisco routers will not allow that. The router is kind enough to tell us that
the number must be a power of 2!

Note in the above config that I had to set the Congestive Discard
Threshold (CDT) before I could set the number of Dynamic Conversation
Queues. The CDT is the number of packets a queue can hold before
WFQ will start to drop packets from high-volume conversations.

A third value that can be set with the fair-queue command is the number
of Reservable Queues (RQ). The RQ value is, well, the number of
queues reserved for reserved conversations! If that sounds like a feature
that our old friend Resource Reservation Protocol (RSVP) would use,
you're right. RSVP reserves bandwidth for a transmission from source to
destination before sending the transmission, and RSVP uses these
queues when WFQ is in effect.

By default, there are no RQs. To create them, use the fair-queue
command as shown:

R1(config-if)#fair-queue 100 64 ?

 <0-1000> Number Reservable Conversation Queues

 <cr>

R1(config-if)#fair-queue 100 64 100

We skipped around a bit on that command, so let's review from left to
right:

The first value is the Congestive Discard Threshold. Remember that
WFQ will drop packets from high-volume conversations ("aggressive
flows") first; the CDT is the number of packets that will be held in a queue
before packets are dropped from those conversations. Default is 64.

The second value is the number of Dynamic Conversation Queues. The
default is 256, and when changing this value, you must set it to a power of
2.

The third and final value is the number of Reservable Queues. The
default is zero, and the range is 0 - 1000.

Real-World vs. Theory In WFQ

I want to bring something to your attention regarding WFQ theory and its
actual operation. In the previous config, we set the Congestive Discard

Threshold to 100 with no problem. According to Cisco and non-Cisco
documentation, that value is required to be set to a power of 2, just as the
number of Dynamic Queues was. That wasn't the case on this router,
though.

Let's set it to 17 just to make sure.

R1(config-if)#fair-queue ?

 <1-4096> Congestive Discard Threshold

 <cr>

R1(config-if)#fair-queue 17

On rare occasions, a Cisco router will accept an illegal command without
prompting the admin, but the command doesn't actually take effect. Let's
verify that command's results with show queueing interface.

R1#show queueing interfac serial 0/0/0

Interface Serial0/0/0 queueing strategy: fair

 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0

 Queueing strategy: weighted fair

 Output queue: 0/1000/17/0 (size/max total/threshold/drops)

 Conversations 0/0/256 (active/max active/max total)

 Reserved Conversations 0/0 (allocated/max allocated)

 Available Bandwidth 1158 kilobits/sec

Hmm. I see "17" there. Let's double-verify with show queueing.

R1#show queueing

Current fair queue configuration:

 Interface Discard Dynamic Reserved Link Priority

 threshold queues queues queues queues

 Serial0 17 256 0 8 1

Sure looks like the non-Base2 value was accepted. :) I doubt this comes
up on your ONT exam, but just in case it does, I'd stick with the official
Cisco theory that both the Congestive Discard Threshold and number of
Dynamic Queues must both be set to a power of 2. As we well know,
theory doesn't always match up with the real world!

The Exception To The WFQ Rule

I mentioned several times that WFQ is the default queueing scheme for
Serial interfaces running at or below E1 speed, but as we all know, there
are always exceptions. WFQ cannot serve as the default for serial
interfaces using any of the following encap methods or interface types,
regardless of the interface's speed:

� Virtual interfaces, including loopbacks and dialer interfaces
� Bridging or tunneling

� LAPB, X.25, SDLC

Disabling And Enabling WFQ

WFQ's the default queuing scheme for Serial interfaces running at or less
than E1 speed, but what if you want to disable it? Or reenable it? Just
use the no fair-queue and fair-queue commands, respectively.

R1(config)#int s0

R1(config-if)#no fair-queue

R1(config-if)#fair-queue

Must remove custom-queue configuration first.

Don't forget - you can have only one queueing scheme running on a
single interface at one time! The router was kind enough to remind us of
that, but the ONT exam will likely not be as kind.

R1(config-if)#no custom-queue-list 1

R1(config-if)#fair-queue

Class-Based Weighted Fair Queuing

With CBWFQ, we're going to create classes of traffic, and these classes
are each assigned their own queue. The queues can then be assigned a
guaranteed amount of bandwidth.

Doesn't exactly sound "fair", does it? The key is that each queue is going
to be guaranteed a certain amount of available bandwidth. In our PQ
discussion, I mentioned several times that you have to watch for the
possibility of queue starvation, but that danger doesn't exist with CBWFQ,
since every queue is guaranteed some bandwidth.

Some important details regarding CBWFQ:

� You can create up to 64 queues

� The queues themselves are FIFO queues, but you can configure the
queues with WRED, as we'll soon see

� Traffic that is not explicitly placed in a queue is placed into the default
queue, appropriately named class-default.

Configuring CBWFQ

The first step in configuring CBWFQ is to identify the traffic that should be

placed in a given queue. We'll take all UDP Voice ports and put them into
one queue, while all HTTP traffic will be placed into another queue. Any
remaining traffic will be placed into the default queue. We'll identify those
two groups of traffic with access lists. (WFQ doesn't use ACLs, but
CBWFQ does.)

R1(config)#access-list 110 permit udp any any range 16384 32767

R1(config)#

R1(config)#

R1(config)#access-list 120 permit tcp any any eq 80

That's not a bad range of UDP ports to know, by the way. :)

Now that we've used ACLs to identify the traffic, we'll use class maps that
will be used to match those two ACLs. We'll use the Modular Command-
line Interface (MQC) to create class maps.

After creating the class map UDPVOICE and configuring it to match traffic
defined by ACL 110, I'll run IOS Help so you can see the other options.
That will be followed by the creation of the class map HTTP, which will
match traffic defined by ACL 120.

R1(config)#class-map UDPVOICE

R1(config-cmap)#match access-group 110

R1(config-cmap)#?

QoS class-map configuration commands:

 description Class-Map description

 exit Exit from QoS class-map configuration mode

 match classification criteria

 no Negate or set default values of a command

 rename Rename this class-map

R1(config)#class-map HTTP

R1(config-cmap)#match access-group 120

You're not limited to ACLs for matching. IOS Help shows that we have
plenty of other options, including input-interface and protocol.

R1(config-cmap)#match ?

 access-group Access group

 any Any packets

 class-map Class map

 cos IEEE 802.1Q/ISL class of service/user priority

values

 destination-address Destination address

 discard-class Discard behavior identifier

 dscp Match DSCP in IP(v4) and IPv6 packets

 fr-de Match on Frame-relay DE bit

 fr-dlci Match on fr-dlci

 input-interface Select an input interface to match

 ip IP specific values

 mpls Multi Protocol Label Switching specific values

 not Negate this match result

 packet Layer 3 Packet length

 precedence Match Precedence in IP(v4) and IPv6 packets

 protocol Protocol

 qos-group Qos-group

 source-address Source address

We're now going to define the parameters of the queues with a policy
map. Before we configure the values for the above traffic classes, let's use
IOS Help to see our options.

R1(config)#policy-map BRYANTPOLICY

R1(config-pmap)#?

QoS policy-map configuration commands:

 class policy criteria

 description Policy-Map description

 exit Exit from QoS policy-map configuration mode

 no Negate or set default values of a command

 rename Rename this policy-map

Not much to choose from! We'll use the class command here and name
the class we want to define values for.

R1(config-pmap)#class UDPVOICE

R1(config-pmap-c)#?

QoS policy-map class configuration commands:

 bandwidth Bandwidth

 compression Activate Compression

 drop Drop all packets

 estimate estimate resources required for this class

 exit Exit from QoS class action configuration mode

 netflow-sampler NetFlow action

 no Negate or set default values of a command

 police Police

 priority Strict Scheduling Priority for this Class

 queue-limit Queue Max Threshold for Tail Drop

 random-detect Enable Random Early Detection as drop policy

 service-policy Configure Flow Next

 set Set QoS values

 shape Traffic Shaping

Now that's a little more like it, right? Let's take a look at the most
commonly-used values with policy maps, along with a few little "gotchas".

R1(config-pmap-c)#bandwidth ?

 <8-2000000> Kilo Bits per second

 percent % of total Bandwidth

 remaining % of the remaining bandwidth

We've actually got three options with the bandwidth command. The first
option calls for a numeric value - note that this value is in kbps!

The second option, percent, defines the percentage of available overall
bandwidth that will be assigned to that particular class. Both WFQ and
CBWFQ have the bandwidth percentage options.

The third option, remaining, also defines the percentage of bandwidth that
should be assigned to this class, but it's the percentage of bandwidth that
has not yet been assigned to other classes. This is a relatively new
command, so even if you've worked with CBWFQ before, you may not
have seen that one.

There's one more detail with bandwidth that we have to watch out for - we
can't assign more than 75% of available bandwidth. The router will
reserve 25% of available bandwidth for network control traffic and routing
overhead. This is a good thing - after all, we don't want to cut off our
routing control traffic, or we're not going to have routing!

If you really feel the need to override this percentage, use the max-
reserved-bandwidth command. Don't blame me for all the hyphens!

R1(config-if)#max-reserved-bandwidth ?

 <1-100> Max. reservable bandwidth as % of interface bandwidth

Okay, I lied. There is another detail involving the bandwidth command!
There is no cut-and-dried situation where you should definitely define
bandwidth in kbps or with the bandwidth percent command, but Cisco
routers don't like it when you try to use both in the same policy map. Here,
we'll set the bandwidth to 25 kbps for the UDPVOICE class. Remember
that when we get to the HTTP class!

R1(config)#policy-map BRYANTPOLICY

R1(config-pmap)#class UDPVOICE

R1(config-pmap-c)#bandwidth 25

All classes with bandwidth should have consistent units

There's a friendly little reminder from the router as well!

You'll be happy to know that other important policy-map commands don't
have as many options. The queue-limit command does exactly what it
sounds like it does - it sets the packet limit for the queue. We'll set the limit
here to 512 packets.

R1(config-pmap-c)#queue-limit ?

 <1-4096> Packets

R1(config-pmap-c)#queue-limit 512

Before we configure the HTTP class, let's verify what we've done so far
with show policy-map.

R1#show policy-map

 Policy Map BRYANTPOLICY

 Class UDPVOICE

 Bandwidth 25 (kbps) Max Threshold 64 (packets)

So far, so good. Let's configure the HTTP class with a bandwidth
percentage of 10 and a queue-limit of 100 packets.

R1(config)#policy-map BRYANTPOLICY

R1(config-pmap)#class HTTP

R1(config-pmap-c)#bandwidth percent 10

All classes with bandwidth should have consistent units

R1(config-pmap-c)#queue-limit 100

bandwidth on the class is required to issue this command

We ran into all kinds of trouble with that one! After that last message, I did
a ctrl-Z and a save, so let's see what saved:

R1#show policy-map

 Policy Map BRYANTPOLICY

 Class UDPVOICE

 Bandwidth 25 (kbps) Max Threshold 64 (packets)

 Class HTTP

Not much! Before you configure a policy map, you've got to decide
whether you're going to define bandwidth explicitly or as a percentage,
because you can't do both!

R1(config)#policy-map BRYANTPOLICY

R1(config-pmap)#class HTTP

R1(config-pmap-c)#bandwidth 10

R1(config-pmap-c)#queue-limit 100

Always verify your config with the appropriate show command.

R1#show policy-map

 Policy Map BRYANTPOLICY

 Class UDPVOICE

 Bandwidth 25 (kbps) Max Threshold 64 (packets)

 Class HTTP

 Bandwidth 10 (kbps) Max Threshold 100 (packets)

Finally, we'll define some values for the default queue. The options are
the same:

R1(config-pmap)#class class-default

R1(config-pmap-c)#?

QoS policy-map class configuration commands:

 bandwidth Bandwidth

 compression Activate Compression

 drop Drop all packets

 estimate estimate resources required for this class

 exit Exit from QoS class action configuration mode

 fair-queue Enable Flow-based Fair Queuing in this Class

 netflow-sampler NetFlow action

 no Negate or set default values of a command

 police Police

 priority Strict Scheduling Priority for this Class

 queue-limit Queue Max Threshold for Tail Drop

 random-detect Enable Random Early Detection as drop policy

 service-policy Configure Flow Next

 set Set QoS values

 shape Traffic Shaping

The default packet drop method for the default class is tail drop, but we
can easily change that. To enable RED for the default class, just use the
random-detect command...

R1(config-pmap-c)#random-detect

fair-queue or bandwidth on the class is required to issue this command

... right after you enable WFQ or set a bandwith value! Here, we'll enable
WFQ and set the number of Dynamic Queues to 32.

R1(config-pmap-c)#fair-queue 32

R1(config-pmap-c)#random-detect

As you can see, there are a lot of options with CBWFQ! The key for real-
world success with CBWFQ is to plan your queuing strategy in advance -
don't just sit down at the router and wing it.

Hey, we ought to apply this policy map! We do so with the service-policy
command. IOS Help will show options for input and output policies, but
let's think about this - can we really have a queuing policy for incoming
packets?

R1(config)#int ser 0

R1(config-if)#service-policy ?

 history Keep history of QoS metrics

 input Assign policy-map to the input of an interface

 output Assign policy-map to the output of an interface

R1(config-if)#service-policy input ?

 WORD policy-map name

R1(config-if)#service-policy input BRYANTPOLICY

CBWFQ : Can be enabled as an output feature only

R1(config-if)#service-policy output BRYANTPOLICY

No. :) CBWFQ policies can only be put into effect for outbound packets.

Verify the overall config with show policy-map interface.

R1#show policy-map interface s0/0/0

 Serial0/0/0

 Service-policy output: BRYANTPOLICY

 Class-map: UDPVOICE (match-all)

 0 packets, 0 bytes

 5 minute offered rate 0 bps, drop rate 0 bps

 Match: access-group 110

 Queueing

 Output Queue: Conversation 41

 Bandwidth 25 (kbps)Max Threshold 64 (packets)

 (pkts matched/bytes matched) 0/0

 (depth/total drops/no-buffer drops) 0/0/0

 Class-map: HTTP (match-all)

 0 packets, 0 bytes

 5 minute offered rate 0 bps, drop rate 0 bps

 Match: access-group 120

 Queueing

 Output Queue: Conversation 42

 Bandwidth 10 (kbps)Max Threshold 100 (packets)

 (pkts matched/bytes matched) 0/0

 (depth/total drops/no-buffer drops) 0/0/0

 Class-map: class-default (match-any)

 0 packets, 0 bytes

 5 minute offered rate 0 bps, drop rate 0 bps

 Match: any

 Queueing

 Flow Based Fair Queueing

 Maximum Number of Hashed Queues 32

 (total queued/total drops/no-buffer drops) 0/0/0

 exponential weight: 9

Low Latency Queuing

Waaaay back at the beginning of this chapter, I mentioned that a major
reason we don't stick with FIFO is that today's networks handle more
Voice traffic than ever before. Voice traffic needs the highest priority we
can give it, and one drawback of CBWFQ is that while we do have a
default queue, that default queue isn't given higher priority than the others.

Configuring LLQ creates such a queue. This strict priority queue is
created primarily for Voice traffic, which is much more sensitive to jitter
and delay than "regular" data traffic.

When we configure LLQ in just a moment, it's going to look a great deal
like CBWFQ. Basically, LLQ is an add-on or extension to CBWFQ. The
commands are almost all the same, and LLQ uses the class-default class
just as CBWFQ does. The major difference between LLQ and CBWFQ is
the creation of that strict priority queue, and there's one simple word that
creates that queue - priority.

We'll start this example with an ACL defining the UDP voice ports. I told
you this was a good group of ports to know!

R1(config)#access-list 110 permit udp any any range 16384 32767

Just as before, we'll use the class-map command to match ACL 110.

R1(config)#class-map VOICE

R1(config-cmap)#match access-group 110

Here's where the strict priority queue comes in. In the policy map
configuration, we'll use the priority command to assign bandwidth rather
than the bandwidth command.

R1(config)#policy-map EXAMPLE

R1(config-pmap)#class VOICE

R1(config-pmap-c)#?

QoS policy-map class configuration commands:

 bandwidth Bandwidth

 compression Activate Compression

 drop Drop all packets

 estimate estimate resources required for this class

 exit Exit from QoS class action configuration mode

 netflow-sampler NetFlow action

 no Negate or set default values of a command

 police Police

 priority Strict Scheduling Priority for this Class

 queue-limit Queue Max Threshold for Tail Drop

 random-detect Enable Random Early Detection as drop policy

 service-policy Configure Flow Next

 set Set QoS values

 shape Traffic Shaping

R1(config-pmap-c)#priority ?

 <8-2000000> Kilo Bits per second

 percent % of total bandwidth

R1(config-pmap-c)#priority percent 25

The rules for the priority command in LLQ are the same as they are for the
bandwidth command in CBWFQ - you can't use the priority and priority
percent commands in the same policy map. Here, we assigned 25% of
the overall available bandwidth to the strict priority queue. After defining
the priority queue's parameters, you can then create other classes just as
we did with CBWFQ.

The policy map is applied in the same fashion as CBWFQ, and the policy
map can only be applied to outgoing traffic.

R1(config-if)#service-policy output EXAMPLE

I won't put the entire output of show policy-map here, but note that the
strict priority queue creation is verified with this command.

Service-policy output: EXAMPLE

 Class-map: VOICE (match-all)

 0 packets, 0 bytes

 5 minute offered rate 0 bps, drop rate 0 bps

 Match: access-group 110

 Queueing

 Strict Priority

 Output Queue: Conversation 264

 Bandwidth 25 (%)

LLQ is an excellent choice for voice traffic - after all, there's a special
priority queue that's designed for voice traffic - but even with LLQ, you can
run into some issues with voice delivery. If you do, you should look into
running LFI.

And what is LFI? Glad you asked!

Link Fragmenting And Interleaving

� In today's networks, we've basically got two packet types: delay-
sensitive, and non-delay-sensitive. Obviously, we want to get that delay-
sensitive (voice, most likely) traffic to its destination as quickly as possible,
but we can't just ignore the regular data traffic to do so.

LFI operates at Layer 2 and it allows these two traffic types to be sent
almost simultaneously. It sounds complicated, but as we like to say
around here, the name is the recipe.

The data packets will be fragmented, and then those fragments are
interleaved with the delay-sensitive packets. (This is a fancy way of saying
that the fragments are mixed in with the delay-sensitive packets as they're
sent across the link.)

Once the fragments reach the other side of the link, they're put back
together. Simple enough!

LFI is primarily used on Frame Relay and ATM circuits, although you can
configure LFI on a dialer interface for use with ISDN. Interestingly
enough,while LFI does support Voice Over IP (VoIP), it does not support
Voice over Frame Relay (VoFM) or Voice over ATM (VoATM).

Let's walk through an example of configuring LFI on a frame circuit. First,
we'll create a Virtual Template with our old friend ppp multilink. After we
enable ppp multilink, we'll enable LFI.

R1(config)#interface virtual-template 5

R1(config-if)#ppp multilink

R1(config-if)#ppp multilink ?

 bap Enable BACP/BAP bandwidth allocation negotiation

 fragment-delay Specify the maximum delay for each fragment

 fragmentation Enable/Disable multilink fragmentation

 idle-link Do not transmit fragments over the lowest speed link

 interleave Allow interleaving of small packets with fragments

 <cr>

R1(config-if)#ppp multilink interleave

To apply it to a given Frame Relay DLCI, enable traffic shaping on the
interface and then apply the virtual template to the appropriate DLCI.

R1(config-if)#interface serial0

R1(config-if)#frame traffic-shaping

R1(config-if)#frame-relay interface-dlci 122 ?

 ppp Use RFC1973 Encapsulation to support PPP over FR

 <cr>

R1(config-if)#frame-relay interface-dlci 122 ppp ?

 Virtual-Template Virtual Template interface

R1(config-if)#frame-relay interface-dlci 122 ppp virtual-template ?

 <1-25> Virtual-Template interface number

R1(config-if)#frame-relay interface-dlci 122 ppp virtual-template 5

There are other methods of configuring LMI, and the configuration for
ATM is beyond the scope of the ONT exam. It is a good idea to know the
basic configuration of LMI, and an especially good idea to know what it
does!

"Hot Spots And Gotchas"

No matter which queueing solution you choose, there's a basic three-step
process to follow - create the queues, divide traffic into classes, and
schedule the queues in accordance with their importance.

You can only apply one queueing scheme to an interface.

� FIFO is fine in some cases, but it's not appropriate for voice, video, or
high-priority application traffic in your network.

Low Latency Queueing (LLQ) is basically CBWFQ with a priority queue.
That LLQ priority queue is designed for voice traffic. making LLQ the
queueing scheme of choice over CBWFQ. CBWFQ is a better choice if
the traffic is "regular", non-delay-sensitive data.

With Priority Queueing, queue starvation can occur if too many types of
traffic are classified as High priority. Packets in the lower-importance
queues can actually end up just sitting in the queue to allow the packets in
the higher-importance queues to be transmitted.

CBWFQ uses ACLs; WFQ does not. Both of these allow us to define how
much bandwidth should be assigned to each queue.

WFQ is the default for Serial interfaces running at E1 or less.

WFQ uses the concept of aggressive flows to decide which packets to
drop when the queues become congested.

Copyright © 2008 The Bryant Advantage. All Rights Reserved.

